Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Sixth International Conference on Differential and Functional Differential Equations DFDE-2011
August 16, 2011 12:55, Moscow
 


Homogenization of spin energies

A. L. Piatnitskiab

a Lebedev Physical Institute, Moscow, Russia
b Narvik University College, Narvik, Norway
Video records:
Flash Video 288.0 Mb
Flash Video 1,750.9 Mb
MP4 1,096.4 Mb

Number of views:
This page:242
Video files:124

A. L. Piatnitski



Abstract: The talk will focus on homogenization and $\Gamma$-convergence of surface and line energies defined on lattice (spin) systems in $\mathbf Z^d$ through bond interactions. We will dwell on nearest neighbours interaction systems and consider both periodic and random statistically homogeneous ergodic cases.
Given a smooth bounded domain $G\subset\mathbf R^n$ and a small parameter $\varepsilon>0$, we denote $\varepsilon\mathbf Z^d\cup G$ by $G_\varepsilon$ and, for a function $u$ defined on $G_\varepsilon$, consider the energy
$$ E_\varepsilon(u)=\sum_{i,j\in G_\varepsilon}\varepsilon^{d-1}c_{ij}(u_i-u_j)^2, \qquad c_{ij}\ge 0, \quad c_{ij}=0\text{ if }|i-j|\ne\varepsilon. $$
Our goal is to study the limit behaviour of $E_\varepsilon$ as $\varepsilon\to 0$.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024