Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Complex Analysis and Related Topics (satelllite of ICM-2022)
July 1, 2022 19:50–20:10, Секция C. Функциональный анализ и квантовая теория информации, Kazan, Kazan (Volga Region) Federal University
 


Conjugate objects in C*-categories and conjugate superselection sectors

A. S. Sitdikov, A. S. Nikitin

Number of views:
This page:55

Abstract: The starting point of this work is the operation of conjugation on finite-dimensional objects in strict tensor C$^*$-category $\mathbf{end}(\mathscr{A})$ of localized endomorphisms $\rho$ of the quasilocal C$^*$-algebra $\mathscr{A}$ of observables [1]. The equivalence classes of irreducible, translation covariant localized endomorphisms are the superselection sectors of $\mathscr{A}$, where the tensor product is the composition of endomorphisms. The intertwiner space $(\rho,\sigma)$ between $\rho,\sigma \in \mathbf{end}(\mathscr{A})$
$$(\rho,\sigma) = t \in \mathscr{A} : t\rho(a) = \sigma(a)t ,\forall a \in \mathscr{A}.$$
The set of superselection sectors is endowed with a natural conjugation. The $ \bar{\rho} \in \mathbf{end}(\mathscr{A})$ is a conjugate of $\rho$ iff the conjugate equation holds true and there exist multiples of isometries $r \in (\i, \bar{\rho}\rho)$ and $\bar{r} \in ({\i}, \rho\bar{\rho})$ [1].
In [2] Doplicher and Roberts construct the field net as crossed product of the observable algebras by a semigroup of endomorphisms. In this sense the crossed product contains both $\mathscr{A}$ and the Cuntz algebra $\mathscr{O}_d$ generated by multiplet of isometries $\{\psi_i \}^d_{i=1}$. Therefore it is possible to formulate our constructions in terms of isometries $\psi_i$. Here we will consider the category generated by one (canonical) endomorphism $\rho=\sum_{i=1}^{3}\psi_ia\psi_i^*$ (with dimension $d = 3$.)
Proposition. Let, $r=\sum_{i=1}^{3}\hat{\psi_i}\psi_i$ and $\bar{r}=\sum_{i=1}^{3}\psi_i\hat{\psi_i}$. Then $\bar{\rho}=\sum_{i=1}^{3}\hat{\psi_i}a\hat{\psi}_i^*$, is such that $r\i(a) = \bar{\rho}\rho(a)r (a \in \mathscr{A})$ and the conjugate equation is satisfyed.
Here $\hat{\psi}_i=\frac{1}{2!}\sum_{p \in \mathbb{P}_3(i)} sign(p)\psi_{p(2)}\psi_{p(3)}$, $\mathbb{P}_3(i)$ is the subset in $\mathbb{P}_3$ with $p(1) = i$. If such $\bar{\rho}$ exist, then we can find the left inverse $\varphi$ to be set $\varphi_{\sigma,\tau} : (\rho\sigma,\rho\tau)\to(\sigma,\tau)$, where $\rho,\sigma,\tau \in \mathbf{end}(\mathscr{A})$. Let, $x \in (\rho\bar{\rho}, \bar{\rho}\rho)$. Then a simple computation shows, that $\phi_{\bar{\rho},\bar{\rho}}(x)=\sum_j\psi_j^*x\psi_j\in(\bar{\rho},\bar{\rho})$.
If $A^{\rho}_{d=3}$ is the projector on to the antisymmetric subspace in $(\rho^3,\rho^3)$, then a computation shows that $\phi(A^{\rho}_{d=3})=\frac{1}{3}\sum_{i,j,k}\psi_k^*\psi_i\hat{\psi}_i\hat{\psi}_j^*\psi_j^*\psi_k, A^{\rho}_{3}=\frac{1}{3}\sum_{i,j}\psi_i\hat{\psi}_i\hat{\psi}_j^*\psi_j^*$.

Language: English

References
  1. Doplicher S., Roberts J.E., “A new duality theory for compact groups”, Invent. Math., 98 (1989), 157–218
  2. Doplicher S., Roberts J.E., “Endomorphisms of C*-algebras, cross products and duality for compact groups”, Annals of Mathematics, 130 (1989), 75–119
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024