Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Complex Analysis and Related Topics (satelllite of ICM-2022)
July 1, 2022 19:30–19:50, Секция C. Функциональный анализ и квантовая теория информации, Kazan, Kazan (Volga Region) Federal University
 


Total convex structures and ultraproducts

S. G. Haliullin
Video records:
MP4 811.9 Mb

Number of views:
This page:139
Video files:16



Abstract: Let $(\mathscr{E} ,S)$ be an event structure [1]. A set of states $S$ is said to be a convex structure if it has the following two properties:
(1) for any positive numbers $\lambda_1,\lambda_2,\dots,\lambda_n$ satisfying the condition $\sum^n_{i =1}\lambda_i = 1$ and any states $s_1, s_2,\dots, s_n$ there is a unique element $\langle\lambda_1,\lambda_2,\dots,\lambda_n; s_1, s_2,\dots, s_n\rangle\in S$; (2) $\langle\lambda_1,\lambda_2,\dots,\lambda_n; s, s,\dots, s\rangle = s$.
This state $\langle\lambda_1,\lambda_2,\dots,\lambda_n; s_1, s_2,\dots, s_n\rangle$ is called a mixture of states $s_1, s_2,\dots, s_n$. For mixtures of two states, we use the notation $\langle\lambda,1-\lambda; s, t\rangle = \langle\lambda; s, t \rangle$. A state $s \in S$ is said to be pure if it cannot be written as $s = \langle\lambda; t_1, t_2\rangle$ for some $t_1 \neq t_2$.
We define the distance function of close states $\sigma(s, t)$ as follows: if there exist $s_1, t_1 \in S$ such that the condition $\langle\lambda; s_1, s\rangle= \langle\lambda; t_1, t \rangle$ holds, then $\sigma(s, t ) = \inf \{0 < \lambda \le 1 : \langle\lambda; s_1, s\rangle = \langle\lambda; t_1, t \rangle\}$ ; otherwise, $\sigma(s, t ) = 1/2$. In general, this function is not a metric.
A convex structure $S$ is said to be a $\sigma$-convex structure if the following two properties hold: (1) If $s_n \in S$ and $\lim_{n,m\to\infty}\sigma(s_n, s_m) = 0$, then there exists a unique $s \in S$ such that $\lim_{n\to\infty}\sigma(s_n, s) = 0$; (2) If $\lambda_i > 0, \sum\lambda_i = 1, t_1, t_2,\dots \in S$ and $s_n = \langle\lambda_1,\dots,\lambda_n,1-\sum^{\infty}_{i=n+1}; t_1,\dots, t_{n+1}\rangle$, then $\lim_{n,m\to\infty}\sigma(s_n, s_m) = 0$.
Thus, we can consider infinite (countable) mixtures of states.
A map $f : S \to \mathbb{R}$ is said to be an affine functional if we have $f (\langle\lambda_1,\lambda_2,\dots,\lambda_n; s_1, s_2,\dots, s_n\rangle) = \sum^n_{i=1}\lambda_i s_i$ for any sets $\lambda_1,\lambda_2,\dots,\lambda_n; s_1, s_2,\dots, s_n, \lambda_i>0, \sum\lambda_i = 1$. Note that the set of affine functionals $S^*$ is a linear space with respect to pointwise operations. We define «zero» and «identity» affine functionals: $\mathbf{0}(s) = 0, \mathbf{1}(s) = 1$ for all $s \in S$. Also we define a partial order relation on $S^*$: $f \le g \Leftrightarrow f(s) \le g(s)$ for all $s \in S$. The functional $f \in S^*$ is called an effect if $\mathbf{0} \le f \le \mathbf{1}$. The set of effects will be denoted by $E(S)$. It forms a convex subset of the linear space $S^*$. A total convex structure is a $\sigma$-convex structure with the property: $f (s) = f (t )$ for every effect $f$ implies that $s = t$ . It is well known [1] that then $(S,\sigma)$ is a complete metric space.
Let $(\mathscr{E}_n,S_n)_{n\ge 1}$ be a sequence of event structures, $\mathscr{U}$ be a non-trivial ultrafilter in the set $\mathbb{N}$ of naturals. Then the ultraproduct $((\mathscr{E}_n)_{\mathscr{U}} ,S_{\mathscr{U}} )$ is an event structure [2]. On the set of states $S_{\mathscr{U}}$ we introduce by means of factors a total convex structure and a set of effects.
Theorem 1. Let $(S_n,\sigma_n)_{n\ge 1}$ be a sequence of total convex structures, $\mathscr{U}$ be a nontrivial ultrafilter in set of natural numbers $\mathbb{N}$. Then the ultraproduct $(S_{\mathscr{U}} ,\sigma_{\mathscr{U}} )$ is a total convex structure.
Next, we consider the properties of ultraproducts of observables on the set of effects $E(S)$.

Language: English

References
  1. Gudder S. P., Stochastic Methods in Quantum Mechanics, Dover Publications, 2014, 219 pp.
  2. Haliullin S. G., “Ultraproducts of quantum mechanical systems”, Ufa Mathematical Journal, 14:2 (2022), 94–100 (in Russian)
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024