Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International Conference "Advances in Algebra and Applications"
June 25, 2022 14:30–15:20, Minsk
 


Galois cohomology of real algebraic groups

D. A. Timashev

Lomonosov Moscow State University
Video records:
MP4 246.1 Mb
Supplementary materials:
Adobe PDF 746.2 Kb

Number of views:
This page:166
Video files:28
Materials:23



Abstract: I shall speak about joint results with Mikhail Borovoi on computation of Galois cohomology of linear algebraic groups over real numbers. The real case is crucial in computation of Galois cohomology over number fields. The Levi decomposition reduces the problem to the case of reductive groups and a theorem of Borovoi (1988) reduces computation to maximal anisotropic tori. Based on this, we obtain an explicit combinatorial description of Galois cohomology for a real reductive group in terms of some special integer labelings of its affine Dynkin diagram and some subquotients of the cocharacter lattice of the central torus. As a by-product, we obtain a transparent description for the component group of the real locus of a connected reductive group in terms of the cocharacter lattice of a maximal split torus, which reinforces a classical result of Matsumoto (1964).

Supplementary materials: Timashev.pdf (746.2 Kb)

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024