Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Complex Approximations, Orthogonal Polynomials and Applications (CAOPA)
November 15, 2021 20:00–21:00, Moscow, online via Zoom at 17:00 GMT (=12:00 EST=18:00 CET=20:00 Msk)
 


Positive definite periodic functions and polynomials orthogonal on the unit circle with dense point spectrum

A. S. Zhedanovab

a Renmin University of China
b Université de Montréal, Centre de Recherches Mathématiques



Abstract: We demonstrate that any positive definite periodic function $f(x)$ generates a set of polynomials orthogonal on the unit circle (OPUC) with dense point spectrum. Explicit examples of OPUC arise if $f(x)$ coincides with one of two Jacobi elliptic functions: $\textrm{cn}(x;k)$ or $\textrm{dn}(x,k)$. These OPUC have a simple explicit expression in terms of elliptic hypergeometric functions. A more elementary example corresponds to wrapped geometric distribution on the unit circle . In this case OPUC are expressed in terms of a basic hypergeometric function. In all the above cases corresponding OPUC satisfy remarkable “classical” properties.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024