Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Cohomological geometry of differential equations
November 17, 2021 19:20, Moscow, Independent University of Moscow, room 303, for Zoom access please contact seminar@gdeq.org
 


Presymplectic gauge PDEs and Batalin-Vilkovisky formalism

M. A. Grigoriev
Video records:
MP4 329.1 Mb

Number of views:
This page:187
Video files:36

M. A. Grigoriev



Abstract: Gauge PDE is a geometrical object underlying what physicists call a local gauge field theory defined at the level of equations of motion (i.e. without specifying Lagranian) in terms of BV-BRST formalism. Although gauge PDE can be defined as a PDE equipped with extra structures, the generalization is not entirely straightforward as, for instance, two gauge PDEs can be equivalent even if the underlying PDEs are not. As far as Lagrangian gauge systems are concerned the powerful framework is provided by the BV formalism on jet-bundles. However, just like in the case of usual PDEs it is difficult to encode the BV extension of the Lagrangian in terms of the intrinsic geometry of the equation manifold while working on jet-bundles is often very restrictive, especially in analyzing boundary behaviour, e.g., in the context of AdS/CFT correspondence. We show that BV Lagrangian (or its weaker analogs) can be encoded in the compatible graded presymplectic structure on the gauge PDE. In the case of genuine Lagrangian systems this presymplectic structure is related to a certain completion of the canonical BV symplectic structure. A presymplectic gauge PDE gives rise to a BV formulation of the underlying system through an appropriate generalization of the Alexandrov-Kontsevich-Schwarz-Zaboronsky (AKSZ) sigma-model construction followed by taking the symplectic quotient. The construction is illustrated on the standard examples of gauge theories with particular emphasis on the Einstein gravity, where this naturally leads to an elegant presymplectic AKSZ representation of the BV extension of the Cartan-Weyl formulation of gravity.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024