Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Conference «Hyperbolic Dynamics and Structural Stability» Dedicated to the 85th Anniversary of D. V. Anosov
November 8, 2021 19:00–19:45, Moscow, online
 


Small denominators and large numerators of quasiperiodic Schrödinger operators

Wencai Liu

Texas A&M University
Video records:
MP4 341.5 Mb

Number of views:
This page:249
Video files:19
Youtube Live:

Wencai Liu



Abstract: We initiate an approach to simultaneously treat numerators and denominators of Green's functions arising from quasi-periodic Schrödinger operators, which in particular allows us to study completely resonant phases of the almost Mathieu operator.
Let $ (H_{\lambda,\alpha,\theta}u) (n)=u(n+1)+u(n-1)+ 2\lambda \cos2\pi(\theta+n\alpha)u(n)$ be the almost Mathieu operator on $\ell^2(\mathbb{Z})$, where $\lambda, \alpha, \theta\in \mathbb{R}$. Let
$$ \beta(\alpha)=\limsup_{k\rightarrow \infty}-\frac{\ln ||k\alpha||_{\mathbb{R}/\mathbb{Z}}}{|k|}.$$
We prove that for any $\theta$ with $2\theta\in \alpha \mathbb{Z}+\mathbb{Z}$, $H_{\lambda,\alpha,\theta}$ satisfies Anderson localization if $|\lambda|>e^{2\beta(\alpha)}$. This confirms a conjecture of Avila and Jitomirskaya [The Ten Martini Problem. Ann. of Math. (2) 170 (2009), no. 1, 303–342] and a particular case of a conjecure of Jitomirskaya [Almost everything about the almost Mathieu operator. II. XIth International Congress of Mathematical Physics (Paris, 1994), 373–382, Int. Press, Cambridge, MA, 1995].

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024