Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Conference «Hyperbolic Dynamics and Structural Stability» Dedicated to the 85th Anniversary of D. V. Anosov
November 9, 2021 18:00–18:45, Moscow, online
 


Quasiperiodic operators with monotone potentials

I. Kachkovskii

Michigan State University
Video records:
MP4 266.1 Mb

Number of views:
This page:168
Video files:19
Youtube Live:

I. Kachkovskii



Abstract: The talk is based on joint works [KPS], [KKPS] with S. Krymskii, L. Parnovski, and R. Shterenberg.
We consider quasiperiodic operators on $\mathbb Z^d$ of the form
$$ (H(x)\psi)_{\mathbf n}=(\Delta \psi)_{\mathbf n}+\varepsilon f(x+{\mathbf n}\cdot\omega)\psi_{\mathbf n}, $$
where $f$ is a monotone function that maps the interval $(0,1)$ onto $(-\infty,+\infty)$ and is extended into $\mathbb R$ by $1$-periodicity. The frequency vector $\omega$ is assumed to satisfy a Diophantine property (and, in particular, have rationally independent components). For small $\varepsilon>0$ and under some additional monotonicity assumptions on $f$, we construct a diagonalization of such operator by direct analysis of the perturbation series.
[KPS] Kachkovskiy I., Parnovski L., Shterenberg R., Convergence of perturbation series for unbounded monotone quasiperiodic operators, https://arxiv.org/abs/2006.00346. [KKPS] Kachkovskiy I., Krymski S., Parnovski L., Shterenberg R., Perturbative diagonalisation for Maryland-type quasiperiodic operators with flat pieces, J. Math. Phys. 62 (2021), no. 6, 063509.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024