Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Analysis days in Sirius
October 28, 2021 09:45–10:30, Sochi, online via Zoom at 08:45 CEST (=07:45 BST, =02:45 EDT)
 


On zeroes and poles of Helson zeta function

R. V. Romanov

Saint Petersburg State University

Number of views:
This page:129

Abstract: The structure of poles and zeroes of the Helson zeta function, $ \zeta_\chi (s)= \sum_1^{\infty}\chi(n)n^{-s} $, is studied. In particular, it is shown that two arbitrary disjoint sets in the critical strip $ 21/40 < \Re s < 1 $ not accumulating off the left boundary $ \Re s = 21/40 $ are the sets of zeroes and poles of $ \zeta_\chi $, respectively, for an appropriate choice of the completely multiplicative unimodular function $ \chi $. This is a joint work with I. Bochkov.

Language: English

Website: https://us02web.zoom.us/j/6250951776?pwd=aG5YNkJndWIxaGZoQlBxbWFOWHA3UT09

* ID: 625 095 1776, password: pade
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024