Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Analysis days in Sirius
October 28, 2021 11:40–12:25, Sochi, online via Zoom at 10:40 CEST (=09:40 BST, =04:40 EDT)
 


Invertibility threshold for Nevanlinna quotient algebras

P. Thomas

Institut de Mathématiques de Toulouse

Abstract: Let $\mathcal{N}$ be the Nevanlinna class and let $B$ be a Blaschke product. Consider the natural necessary condition for invertibility of $[f]$ in the quotient algebra $\mathcal{N} / B \mathcal{N}$ : "$|f| \ge e^{-H} $ on the zero set of $B$, for some positive harmonic function $H$". For large enough functions $H$, this is almost a sufficient condition if and only if the function $- \log |B|$ has a harmonic majorant on the set $\{z\in\mathbb{D}:\rho(z,\Lambda)\geq e^{-H(z)}\}$.
We thus study the class of harmonic functions $H$ such that this last condition holds, and give some examples of $B$ where it can be entirely determined.

Language: English

Website: https://us02web.zoom.us/j/6250951776?pwd=aG5YNkJndWIxaGZoQlBxbWFOWHA3UT09

* ID: 625 095 1776, password: pade
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024