Abstract:
We compute generators for the algebra of rational scalar differential invariants of general and degenerate Kundt spacetimes. Special attention is given to dimensions 3 and 4 since in those dimensions the degenerate Kundt metrics are known to be exactly the Lorentzian metrics that can not be distinguished by polynomial curvature invariants constructed from the Riemann tensor and its covariant derivatives.
The talk is based on joint work with Boris Kruglikov.