Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Memorial Conference on Analytic Number Theory and Applications Dedicated to the 130th Anniversary of I. M. Vinogradov
September 14, 2021 13:30–14:00, Moscow, Steklov Mathematical Institute, 8, Gubkina str, room 110 + online
 


The estimates of short weighted Kloosterman sums

N. K. Semenova

Lomonosov Moscow State University
Video records:
MP4 100.2 Mb

Number of views:
This page:198
Video files:35

N. K. Semenova



Abstract: The incomplete weighted Kloosterman sum is the exponential sum of the type
$$ S(x, m;a, b) = \sum_{\substack{\nu \leqslant x\\ (\nu, m) = 1}}{ f(\nu )\exp\Big( 2\pi i \frac{a\overline{\nu} + b\nu}{m}\Big)}, $$
where $m, a, b$ are integers, $1<x<m$, the weight $f(\nu)$ is some arithmetic function and $\overline{\nu}$ denotes the inverse residue to $\nu$ modulo $m$, that is, $\nu \overline{\nu} \equiv 1 \pmod{m}$.

In the talk, we'll speak about some new estimates for incomplete Kloosterman sums with weights for case when $m \geqslant m_0$ is a prime, $(a,m)=1$ and the length $x$ of the sum lies in the interval
$$ \exp(c (\ln m)^{2/3} (\ln\ln m)^{4/3}) \leqslant x \leqslant \sqrt{m},\quad c>0. $$
The weight function $f$ here is the Möbius function, the characteristic function of the set of the square-free numbers, the multidimensional divisor function and the characteristic function of the set of numbers that are the sum of two squares of integers. Our estimates are based on the method developed by A.A. Karatsuba [1], [2] in 1990's, and they improve the previous result obtained by M.A. Korolev [3] in 2010.

[1] A.A. Karatsuba, Fractional parts of functions of a special form, Izv. Math., 59 (1995), № 4, p. 721–740.

[2] A.A. Karatsuba, Analogues of Kloosterman sums, Izv. Math., 59 (1995), № 5, p. 971–981.

[3] M.A. Korolev, Short Kloosterman sums with weights, Math. Notes, 88 (2010), № 3, p. 374–385.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024