|
|
August 13, 2021 09:30–10:20, Пленарные доклады, Sochi
|
|
|
|
|
|
Локальная разрешимость задачи со свободной границей для магнитогидродинамического контактного разрыва
Yu. L. Trakhininab a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Novosibirsk State University
|
Number of views: |
This page: | 167 |
|
Website:
https://talantiuspeh.webex.com/talantiuspeh-ru/j.php?MTID=m55570f44dd449faf2b424bad81fd836c
References
-
Y. Trakhinin, “The existence of current-vortex sheets in ideal compressible magnetohydrodynamics”, Arch. Ration. Mech. Anal., 191 (2009), 245–310
-
Y. Trakhinin, “Local existence for the free boundary problem for nonrelativistic and relativistic compressible Euler equations with a vacuum boundary condition”, Comm. Pure Appl. Math., 62 (2009), 1551-1594
-
A. Morando, Y. Trakhinin, P. Trebeschi, “Local existence of MHD contact discontinuities”, Arch. Ration. Mech. Anal., 228 (2018), 691-742
-
Y. Trakhinin, T. Wang, “Well-posedness of free boundary problem in non-relativistic and relativistic ideal compressible magnetohydrodynamics”, Arch. Rational Mech. Anal., 239 (2021), 1131-1176
-
Y. Trakhinin, T. Wang, “Nonlinear stability of MHD contact discontinuities with surface tension”
|
|