Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Complex Approximations, Orthogonal Polynomials and Applications Workshop
June 11, 2021 09:30–10:10, Sochi
 


Poncelet–Darboux, Kippenhahn, and Szegő: projective geometry, matrices and orthogonal polynomials

A. Martínez-Finkelshteinab

a Baylor University
b Universidad de Almería

Number of views:
This page:126

Abstract: We study algebraic curves that are envelopes of families of polygons supported on the unit circle $\mathbb{T}$. We address, in particular, a characterization of such curves of minimal class and show that all realizations of these curves are essentially equivalent and can be described in terms of orthogonal polynomials on the unit circle (OPUC), also known as Szegő polynomials. These results have connections to classical results from algebraic and projective geometry, such as theorems of Poncelet, Darboux, and Kippenhahn; numerical ranges of a class of matrices; and Blaschke products and disk functions.
This is a joint work with Markus Hunziker, Taylor Poe, and Brian Simanek, all at Baylor University.

Language: English

Website: https://us02web.zoom.us/j/8618528524?pwd=MmxGeHRWZHZnS0NLQi9jTTFTTzFrQT09

* Zoom conference ID: 861 852 8524 , password: caopa
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024