Abstract:
The problem of holomorphic extension of functions defined on the boundary of a domain into this domain is actual in multidimensional complex analysis. It has a long history, starting with the proceedings of Poincaré and Hartogs.
We consider continuous functions defined on the boundary of a bounded domain $D$ in $\mathbb C^n$, $n>1$ with piecewise-smooth boundary, and possessing the generalized boundary Morera property along the family of complex lines that intersect the boundary of a domain. Morera property is that the integral of a given function is equal to zero over the intersection of the boundary of the domain with the complex line. It is shown that such functions extend holomorphically to the domain $D$. For functions of one complex variable, the Morera property obviously does not imply a holomorphic extension. Therefore, this problem should be considered only in the multidimensional case $ (n> 1) $. The main method for studying such functions is the method of multidimensional integral representations, in particular, the Bochner-Martinelli integral representation.