Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Seminar of Laboratory of Theory of Functions "Modern Problems of Complex Analysis"
January 21, 2021 12:00–13:00
 


Semicontiunity of small Lyapunov exponent for holomorphic endomorphisms of $\mathbb{P}^k$

K. Kh. Rakhimovab

a Centre National de la Recherche Scientifique, Paris
b Université de Lille

Number of views:
This page:137

Abstract: After a short introduction to dynamics of holomorphic endomorphisms of $\mathbb{P}^k$ we talk about dynamical stability of a holomorphic family of endomorphisms $\{f_\lambda\},$ $\lambda\in M$ (a complex manifold). We show that, if $\{f_\lambda\}$ is a stable family, and for a fixed $\lambda_0$ if $\nu_{\lambda_0}$ is an invariant probability measure on $J_{\lambda_0}$, the small Julia set for $f_{\lambda_0}$, then there exists invariant measures $\nu_\lambda$ on $J_{\lambda}$ which vary continuously on $\lambda$. In the second part of the talk we study Lyapunov exponents of $\nu_\lambda$ and we show that the small Lyapunov exponent is lower semicontinuous.

Website: https://us02web.zoom.us/j/84574793587
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024