Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International Seminar for Young Researchers "Algebraic, Combinatorial and Toric Topology"
December 17, 2020 17:00–17:40, online
 


A $K$-theory criterion for $p$-hyperbolicity

G. Boyde

University of Southampton
Video records:
MP4 194.5 Mb

Number of views:
This page:133
Video files:14



Abstract: For a (nice enough) finite $CW$-complex, consider the sequence of non-negative integers whose $k$-th term is the number of $\mathbb{Z}$-summands appearing in the direct sum of the first $k$ homotopy groups. A famous dichotomy in rational homotopy theory says that either this sequence is bounded (hence eventually constant) or it grows exponentially. For example, this means that no finite $CW$-complex whose rational homotopy grows polynomially exists. Huang and Wu (arXiv 2017) introduced the definitions of $p$- and $\mathbb{Z}/p^r$-hyperbolicity in order to study the growth of the number of torsion summands at a given prime $p$. I will give an overview, focussing on a condition on $K$-theory which implies $p$-hyperbolicity, and deduce some examples of $p$-hyperbolic suspensions. This condition is based on work of Selick on Moore's conjecture for torsion-free suspensions.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024