Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference on Analytic Number Theory dedicated to 75th anniversary of G. I. Arkhipov and S. M. Voronin
December 15, 2020 12:30–13:00, Moscow, online
 


Product of Dirichlet $L$-functions - sign changes of $S(t;\chi_{1},\chi_{2})$

S. A. Gritsenko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Video records:
MP4 104.1 Mb

Number of views:
This page:182
Video files:17



Abstract: Let $\chi_{1}, \chi_{2}$ be two primitive Dirichlet characters with fixed moduli, and let
$$ S(t;\chi_{1},\chi_{2})\,=\,\frac{1}{\pi}\text{arg}\biggl(L\bigl(\tfrac{1}{2}+it,\chi_{1}\bigr)L\bigl(\tfrac{1}{2}+it,\chi_{2}\bigr)\biggr) $$
be an argument of the product of the corresponding $L$-functions on the critical line. In the talk, some new results concerning the behavior of $S(t;\chi_{1},\chi_{2})$ are introduced: formulas for moments, the distribution function and lower bound for the number of sign changes on given interval.

* Conference identificator: 947 3270 9056 Password: 555834
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024