Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Mathematical Colloquium of the Bauman Moscow State Technical University
November 26, 2020 17:30, Moscow, Bauman Moscow State Technical University
 


A polynomial invariant of trivalent graphs that is related to the Jones polynomial of knots

Scott Baldridge

Louisiana State University

Number of views:
This page:150

Abstract: Tutte discovered a polynomial derived from graphs that gives valuable information about the graph. In this talk, I will describe a simple-to-compute polynomial invariant of a trivalent graph with a perfect matching (think: the formula for computing the Tutte polynomial or the Kauffman bracket of a link). This polynomial invariant, called the 2-factor polynomial, counts the number of 2-factors of the graph that contain the perfect matching edges. We will calculate some examples and show some implications of these counts. In particular, we will explain how this polynomial is related to the Jones polynomial and how it can be generalized to compute all of the 3-edge colorings of a trivalent graph.

Zoom-conference identificator: 948 341 6153; Password: 2SXtEz

Language: English

Website: https://us02web.zoom.us/j/9483416153?pwd=NzJmdk5pZjdiMXdoMUFoakNzNFhLQT09
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024