Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Scientific session of the Steklov Mathematical Institute of RAS dedicated to the results of 2020
November 25, 2020 11:30–11:45, Moscow, online
 


On the stochasticity parameter of quadratic residues

M. R. Gabdullin
Video records:
MP4 88.2 Mb

Number of views:
This page:237
Video files:31
Youtube:



Abstract: Following V. I. Arnold, we define the stochasticity parameter $S(U)$ of a set $U\subseteq \mathbb{Z}_M$ to be the sum of squares of the consecutive distances between elements of $U$. We study the stochasticity parameter of the set $R_M$ of quadratic residues modulo $M$. Denote by $s(k)=s(k,\mathbb{Z}_M)$ the average value of $S(U)$ over all subsets $U\subseteq \mathbb{Z}_M$ of size $k$, which can be thought of as the stochasticity parameter of a random set of size $k$. We prove that
a) $\varliminf_{M\to\infty}\frac{S(R_M)}{s(|R_M|)}<1<\varlimsup_{M\to\infty}\frac{S(R_M)}{s(|R_M|)}$;
b) the set $\{ M\in \mathbb{N}: S(R_M)<s(|R_M|) \}$ has positive lower density.

* Zoom Meeting ID: 979 5396 3790

Related articles:
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024