Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference on Analytic Number Theory dedicated to 75th anniversary of G. I. Arkhipov and S. M. Voronin
December 14, 2020 15:30–16:00, Moscow, online
 


On the de Bruijn-Newman constant

H. Ki

Yonsei University
Video records:
MP4 125.1 Mb

Number of views:
This page:158
Video files:17



Abstract: If $\lambda^{(0)}$ denotes the infimum of the set of real numbers $\lambda$ such that the entire function $\Xi_{\lambda}$ represented by
$$ \Xi_{\lambda}(t) = \int_{0}^{\infty} e^{\frac{\lambda}{4}(\log x)^2 + \frac{it}{2}\log x}\left( x^{5/4}\sum_{n=1}^{\infty}\left(2n^4 \pi^2 x - 3n^2\pi\right)e^{-n^2 \pi x}\right)\frac{dx}{x} $$
has only real zeros, then the de Bruijn-Newman constant $\Lambda$ is defined as $\Lambda=4\lambda^{(0)}$. The Riemann hypothesis is equivalent to the inequality $\Lambda\leqslant 0$. Recently, Rodgers and Tao proved $\Lambda\geqslant 0$. In this talk, concerning this, I will introduce results with Young-One Kim and Jungseob Lee.

* Conference identificator: 947 3270 9056 Password: 555834
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024