Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Shafarevich Seminar
July 7, 2020 15:00, Moscow, online
 


A $p$-adic Riemann-Hilbert functor and applications

B. Bhatt

Number of views:
This page:382

Abstract: Perverse sheaves on complex algebraic varieties have some remarkable rigidity properties. When translated through the Riemann-Hilbert correspondence, these can often (e.g., via the theory of Hodge modules) lead to highly non-trivial vanishing theorems on the cohomology of coherent sheaves. I'll explain ongoing work (joint with Jacob Lurie) on a Riemann-Hilbert functor for perverse sheaves on algebraic varieties over a p-adic field. When applied to $Q_p$-sheaves, this allows us to recover some of the aforementioned vanishing theorems. Moreover, unlike the complex variant, our functor also makes sense for $F_p$-sheaves, which leads to new vanishing theorems in mixed characteristic algebraic geometry.

Language: English

Website: https://us02web.zoom.us/j/83327069709
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024