Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Beijing–Moscow Mathematics Colloquium
June 12, 2020 15:00–16:00, Moscow, online
 


Slopes of modular forms and ghost conjecture of Bergdall and Pollack

L. Xiao

Beijing International Center for Math. Research

Number of views:
This page:131

Abstract: In classical theory, slopes of modular forms are p-adic valuations of the eigenvalues of the Up-operator. On the Galois side, they correspond to the p-adic valuations of eigenvalues of the crystalline Frobenius on the Kisin's crystabelian deformations space. I will report on a joint work in progress in which we seems to have proved a version of the ghost conjecture of Bergdall and Pollack. This has many consequences in the classical theory, such as some cases of Gouvea-Mazur conjecture, and some hope towards understanding irreducible components of eigencurves. On the Galois side, our theorem can be used to prove certain integrality statement on slopes of crystalline Frobenius on Kisin's deformation space, as conjectured by Breuil-Buzzard-Emerton. This is a joint work with Ruochuan Liu, Nha Truong, and Bin Zhao.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024