Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Online Conference "Frontiers of Holographic Duality"
May 6, 2020 16:00–17:00, Moscow, online
 


Geometric secret sharing in a model of Hawking radiation

Vijay Balasubramanian

University of Pennsylvania
Video records:
MP4 609.7 Mb
MP4 1,086.3 Mb

Number of views:
This page:209
Video files:21
Youtube:

Vijay Balasubramanian



Abstract: We consider a black hole in three dimensional AdS space entangled with an auxiliary radiation system. We then model the microstates of the black hole in terms of a field theory living on an end of the world brane behind the horizon, and allow this field theory to itself have a holographic dual geometry. This geometry is also a black hole since entanglement of the microstates
with the radiation leaves them in a mixed state. This “inception black hole” can be purified by entanglement through a wormhole with an auxiliary system which is naturally identified with the external radiation, giving a realization of the ER=EPR scenario. In this context, we
propose an extension of the Ryu-Takayanagi (RT) formula, in which extremal surfaces computing entanglement entropy are allowed to pass through the brane into its dual geometry. This
new rule reproduces the Page curve for evaporating black holes, consistently with the recently proposed “island formula”. We then separate the radiation system into pieces. Our extended RT rule shows that the entanglement wedge of the union of radiation subsystems covers the black hole interior at late times, but the union of entanglement wedges of the subsystems may not. This result points to a secret sharing scheme in Hawking radiation wherein reconstruction of certain regions in the interior is impossible with any subsystem of the radiation, but possible with all of it.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024