Loading [MathJax]/jax/output/SVG/config.js
Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Iskovskikh Seminar
November 18, 2010 18:30, Moscow, Steklov Mathematical Institute, room 530
 


Del Pezzo surfaces over dedekind schemes (following A. Corti's paper)

A. Avilov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Number of views:
This page:236

Abstract: We prove a theorem that for any Del Pezzo surface $X_{K}$ over the fraction field $K$ of almost arbitrary discrete valuation ring $\mathcal O$, there is an integral model of this surface $X/\mathrm{Spec}(\mathcal O)$ such that it has terminal singularities of index $1$, the reduced and irreducible central fiber and very ample anticanonical divisor (for $d>2$) and very ample divisor $-2K_{X}$ (for $d=2$), where $d$ is a degree of $X_{K}$.
 
  Contact us:
math-net2025_04@mi-ras.ru
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025