Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Seminar on Complex Analysis (Gonchar Seminar)
September 30, 2019 17:00–19:00, Moscow, Steklov Mathematical Institute, Room 411 (8 Gubkina)
 


Spectral surfaces for families of Schrödinger operators

B. S. Mityagin

The Ohio State University, Columbus, Ohio

Number of views:
This page:182

Abstract: Let $A$ be a self-adjoint operator with the simple discrete spectrum $a_0<a_1<\dots<a_n<\dots$,
$$ A\varphi_n=a_n\varphi_n,\quad n\in\mathbb Z;\quad a_n\to\infty, $$
and $B$ be an operator subordinate to $A$. Then there arises the spectral surface
$$ S=\{(z,E)\in\mathbb C^2|\, (Az+B)f=Ef \text{ for some } f\neq 0\text{ in }H\}. $$
In which disk $|z|<R_n$ is the branch $E_n(z)$, $E_n(0)=a_n$ well-defined? Is the surface $S$ reducible?
We will discuss these and related questions in the case of
(a) Schrödinger–Hill operator $ Ly=-y''+v(x)y,\quad 0\leqslant x\leqslant 2\pi, \quad v(x+2\pi)=v(x) $ and
(b) (an)harmonic operator and its perturbations $ My=(-y''+q(x)y)+zw(x)y,\quad x\in\mathbb R. $
The works by C. Bender and T. Wu, and A. Eremenko and A. Gabrielov were the starting point for us.
The lecture is based on (joint) results of the speaker, Pl. Djakov, J. Adduci, P. Siegl, J. Viola.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024