Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






The 27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications
August 16, 2019 14:00–14:30, Section III, Krasnoyarsk, Siberian Federal University
 


$p$-Laplacian boundary value problem with jumping nonlinearities

T. Jung

Kunsan National University, Kunsan
Video records:
MP4 715.2 Mb
MP4 730.1 Mb

Number of views:
This page:109
Video files:5



Abstract: We investigate multiplicity of solutions for one dimensional $p$-Laplacian Dirichlet boundary value problem with jumping nonlinearites. We obtain three theorems: The first one is that there exists exactly one solution when nonlinearities cross no eigenvalue. The second one is that there exist exactly two solutions, exactly one solutions and no solution depending on the source term when nonlinearities cross one first eigenvalue. The third one is that there exist at least three solutions, exactly one solutions and no solution depending on the source term when nonlinearities cross the first and second eigenvalues. We obtain the first theorem and the second one by eigenvalues and the corresponding normalized eigenfunctions of the $p$-Laplacian Dirichlet eigenvalue problem, and the contraction mapping principle on $p$-Lebesgue space (when $p \geqslant 2$). We obtain the third result by Leray-Schauder degree theory.
This is a joint work with Q-Heung Choi (Inha University, Incheon, South Korea).

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024