Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






The 27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications
August 16, 2019 11:30–12:30, Plenary session, Krasnoyarsk, Siberian Federal University
 


Oscillatory integrals and Weierstrass polynomials

A. S. Sadullaev

National University of Uzbekistan named after M. Ulugbek, Tashkent
Video records:
MP4 1,668.9 Mb
MP4 1,668.7 Mb

Number of views:
This page:180
Video files:28



Abstract: The well-known Weierstrass theorem states that if $f\left( z,w \right)$ is holomorphic at a point $\left( {{z}^{0}},{{w}^{0}} \right)\in \mathbb{C}_{z}^{n}\times {{\mathbb{C}}_{w}}$ and $f\left( {{z}^{0}},{{w}^{0}} \right)=0,$ but $f\left( {{z}^{0}},w \right) \not \equiv 0,$ then in some neighborhood $U=V\times W$of this point $f$ is represented as
\begin{equation} f\left( z,w \right)=\left[ {{\left( w-{{w}^{0}} \right)}^{m}}+{{c}_{m-1}}\left( z \right){{\left( w-{{w}^{0}} \right)}^{m-1}}+...+{{c}_{0}}\left( z \right) \right]\varphi \left( z,w \right),\,\,\,\,(1) \end{equation}
where ${c}_{k}\left( z \right) $ are holomorphic in $V$ and $\varphi(z,w)$ is holomorphic in $U,$ $\varphi(z,w)\neq 0,\, (z,w) \in U$.
In recent years, the Weierstrass representation (1) has found a number of applications in the theory of oscillatory integrals. Using a version of Weierstrass representation the first author (see [ikr]) obtained a solution of famous Sogge-Stein problem (see [SS]). He obtained also close to a sharp bound for maximal operators associated to analytic hypersurfaces.
In the obtained results the phase function is an analytic function at a fixed critical point without requiring the condition $f\left( {{z}^{0}},w \right)\not\equiv 0.$ It is natural to expect the validity of Weierstrass theorem without requiring a condition $f\left( {{z}^{0}},w \right)\not\equiv 0,$ in form
\begin{equation} f\left( z,w \right)=\left[ {{c}_{m}}\left( z \right){{\left( w-{{w}^{0}} \right)}^{m}}+{{c}_{m-1}}\left( z \right){{\left( w-{{w}^{0}} \right)}^{m-1}}+...+{{c}_{0}}\left( z \right) \right]\varphi \left( z,w \right). (2) \end{equation}
Such kind of results may be useful to studying of the oscillatory integrals and in estimates for maximal operators on a Lebesgue spaces. However, the well-known Osgood counterexample [O], p.90 (see also [F], p. 68) shows that when $n>1$ it is not always possible.
In the talk we will discuss, that there is a global option (see [S1][S2]), also a global multidimensional (in $w$) analogue of (2) is true without requiring the condution $f\left( {{z}^{0}},w \right)\not\equiv 0$. In addition, for an arbitrary germ of a holomorphic function, we will prove one representation, that is useful in the study of oscilatory integrals.
This is a joint work with I. Ikramov (Samarkand State University, Samarkand, Uzbekistan).

Language: English

References
  1. B. A. Fuks, Vvedenie v teoriyu analiticheskikh funktsiy mnogikh kompleksnykh peremennykh, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1962 , 419 pp.  mathscinet
  2. I. A. Ikromov, “Damped oscillatory integrals and maximal operators”, Mat. Zametki, 78:6 (2005), 833–852  mathnet  crossref  mathscinet
  3. W. F. Osgood, Lehrbuch der Funktionentheorie. Erster Band, Chelsea Publishing Co., New York, 1965 , xiv+818 pp.  mathscinet
  4. A. Sadullaev, “A criterion for the algebraicity of analytic sets”, Funckional. Anal. i Prilozen., 6:1 (1972), 85–86  mathscinet
  5. A. Sadullaev, “Criteria algebraicity of analytic sets”, Institute of Physics named after L.V. Kirensky, Krasnoyarsk, 1976, (Russian), 1976, 107–122
  6. Christopher D. Sogge, Elias M. Stein, “Averages of functions over hypersurfaces in $R^n$”, Invent. Math., 82:3 (1985), 543–556  crossref  mathscinet
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024