Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






The 27th International Conference on Finite and Infinite Dimensional Complex Analysis and Applications
August 12, 2019 17:00–18:00, Section I, Krasnoyarsk, Siberian Federal University
 


Sampling along characteristics for solutions of the telegraph system

A. Montes-Rodriíguez

University of Seville
Video records:
MP4 1,980.8 Mb
MP4 1,980.7 Mb

Number of views:
This page:144
Video files:13



Abstract: For each function $a : \mathbb{R} \mapsto \mathbb{C}$ with integrable modulus on $\mathbb{R}$, we define the exponential telegraphic function as
$$ a_{\mathbb{T}} (x,y):= \int_{\mathbb{R}} a (t) \exp{(i x t + i y/t)}\ d t \qquad x, y \in \mathbb{R} $$
Every exponential telegraphic function is a continuous solution on $\mathbb{R}^{2}$ of the partial differential equation $U_{xy}+U=0$ with two independent real variables $x, y$. Conversely, for each continuous solution $w$ of the equation $U_{xy}+U=0$ on a convex compact subset $K$ in $ \mathbb{R}^{2}$ with nonempty interior, there exists an exponential telegraphic function $a_{\mathbb{T}} = a_{\mathbb{T}} (w, K)$ which coincides with $w$ on $K$ whenever $w_{x}$ and $w_{y}$ are continuous on $K$. Exponential telegraphic functions have first been studied in 2011, see [2] where it is proved that each such function can be recoverable sampled at the points $(0,\pi n), (\pi n,0)$, $n\! \in\! \mathbb{Z}\!:=\! \{...,-1,0,1,...\}$, lying on two characteristics $x=0$ and $y=0$ of the equation $U_{xy}+U=0$. In other words, it follows from $a_{\mathbb{T}} (\pi n,0) = a_{\mathbb{T}} (0,\pi n) = 0$, $n \in \mathbb{Z}$, that $a_{\mathbb{T}} (x,y)=0$ for every $x, y \in\mathbb{R}$. In this work, we provide a new proof of the fact that $a_{\mathbb{T}} (\pi n,0) = a_{\mathbb{T}} (0,-\pi n) = 0$ for all $n \in \mathbb{N}_{0}\!:=\! \{0,1,2,...\}$, implies $a_{\mathbb{T}} (x,-y)=0$ for each $x, y \geq 0$ (cp. [1]), which means possibility to restore each exponential telegraphic function in the quadrant $[0,+\infty)\times (-\infty, 0]$ by its values at the points $(0,-\pi n), (\pi n,0)$, $n\! \in\! \mathbb{N}_{0}$. We apply these results to continuously differentiable one time by each variable solutions $ v(t, x)$ and $i(t, x)$ of the telegraph system
\begin{gather*} \left\{ \begin{array}{llll} i_{x} (t, x) + C \cdot v_{t}(t, x) + G \cdot v(t, x) = 0 \, , & R - \text{resistance}, & L - \text{inductance}, & D := L G - C R \neq 0, \\ v_{x}(t, x) + L \cdot i_{t}(t, x) + R \cdot i(t, x) = 0 \, ,& C - \text{capacitance}, & G - \text{leakance}, & t \geq 0, \ x \in \mathbb{R}, \end{array} \right. \end{gather*}

with the additional restriction of the existence $T > 0$ satisfying $ v(t, 0) = i(t, 0)= 0$, $t \geq T$. It follows that such $ v$ and $i$ in the angle $|x| \leq t/\sqrt{LC}$, $t \geq 0$, $ x \in \mathbb{R}$ between the two characteristics $x = \pm t/\sqrt{LC}$ are uniquely determined by the values of $v$ or $i$ at the points $(2\pi n L C / |D| \, , \ \pm 2\pi n \sqrt{L C} / |D|)$, $n \in \mathbb{N}_{0}$, lying on these characteristics.

Language: English

References
  1. H. Hedenmalm, A. Montes-Rodríguez, “An extension of ergodic theory for Gauss-type maps”, arXiv: 1512.03228
  2. Haakan Hedenmalm, Alfonso Montes-Rodríguez, “Heisenberg uniqueness pairs and the Klein-Gordon equation”, Ann. of Math. (2), 173:3 (2011), 1507–1527  crossref  mathscinet
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024