Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Conference on Complex Analysis and Mathematical Physics, dedicated to the 70th birthday of A. G. Sergeev
March 22, 2019 16:50–17:20, Moscow, Steklov Mathematical Institute, Gubkina St., 8
 


Boundary value problems on hypersurfaces and $\Gamma $-convergence

Roland Duduchavaab

a The University of Georgia
b A. Razmadze Mathematical Institute
Video records:
MP4 351.3 Mb
MP4 773.6 Mb

Number of views:
This page:258
Video files:59

Roland Duduchava
Photo Gallery



Abstract: We consider two examples of boundary value problems (BVPs) on hypersurfaces: heat conduction by an "isotropic" media, governed by the Laplace equation and bending of elastic "isotropic" media governed by Láme equations. The boundary conditions are classical Dirichlet-Neumann mixed type. The domain $\Omega^{h }:=\mathcal{C}\times (-h,h )$ is of thickness $2h$. Here $\mathcal{C}\subset \mathcal{S}$ is a smooth subsurface of a closed hypersurface $\mathcal{S}$ with smooth nonempty boundary $\partial \mathcal{C}$.
The object of the investigation is what happens with the above mentioned mixed boundary value problems when the thickness of the layer converges to zero $h\to0$. It is shown that the corresponding BVPs converge in the sense of $\Gamma$-convergence to a certain BVPs on the mid surface $\mathcal{C}$: The BVP for the Laplace equation converges to the BVP for the Dirichlet BVP for the Laplace-Beltrami equation, while for the Láme equation we get a new form of BVP for the shell equation.
The suggested approach is based on the fact that the Laplace and Láme operators are represented in terms of Günter's tangential and normal (to the surface) derivatives. Namely, if $\nu$ is the unit normal vector field on the surface, extended in the domain $\Omega_h$, the Günter's derivatives read
$$ \mathcal{D}_j:=\partial_j-\nu_j\mathcal{D}_4, \qquad \mathcal{D}_4 =\partial_\nu=\displaystyle\sum\limits_{k=1}^3\nu_k\partial_k,\qquad j=1,\ldots,n $$
and the Laplace-Beltrami operator on the surface $\mathcal{C}$ is represented as follows
$$ \Delta_\mathcal{C}=\mathcal{D}_1^2+\mathcal{D}_2^2+\mathcal{D}_3^2. $$
Moreover, the Laplace and the Láme operators in the domain
$$ \Delta_{\Omega^h}=\partial _1^2+\partial_2^2+\partial _3^2,\qquad \mathcal{L}_{\Omega^h}=-2\mu\,\Delta-(\lambda+2\mu)\,\nabla{\rm div} $$
are represented as follows:
$$ \Delta _{\Omega ^h}= \displaystyle\sum\limits_{j=1}^{4} \mathcal{D}_{j}^{2}+2\mathcal{H}_\mathcal{C}\mathcal{D}_4,\qquad \mathcal{L}_{\Omega^h}=-2\mu\,\Delta_{\Omega^h} -(\lambda+2\mu)\,\nabla_{\Omega^h}{\rm div} _{\Omega^h}. $$
Here $\mathcal{H}_\mathcal{C}$ is the mean curvature of the surface $\mathcal{C}$ and
$$ \nabla_{\Omega^h}\varphi:=\Bigl\{\mathcal{D}_1\varphi,...,\mathcal{D}_4 \varphi\Bigr\}^\top,\qquad {\rm div}_{\Omega^h}{\mathbf U}:=\sum_{j=1}^4\mathcal{D}_jU^0_j+\mathcal{H}_\mathcal{C} U^0_4,\\ {\mathbf U}=(U_1,U_2,U_3)^\top,\qquad U^0_j:=U_j-U^0_4,\quad U_4^0:=\langle\nu,{\mathbf U}\rangle,\quad j=1,2,3 $$
are the gradient and divergence.
The work is carried out in collaboration with T. Buchukuri and G. Tephnadze (Tbilisi).

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024