Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference «Integrable systems and applications» in honour of M. A. Olshanetsky 80-th birthday
December 11, 2018 14:30–15:00, Moscow, Steklov Mathematical Institute, Gubkina 8, Conference hall
 


Noncommutative Painlevé equations and systems of Calogero type

V. Rubtsov
Video records:
MP4 763.0 Mb
MP4 346.5 Mb

Number of views:
This page:269
Video files:42

V. Rubtsov



Abstract: All Painlevé equations can be written as a time-dependent Hamiltonian system, and as such they admit a natural generalization to the case of several particles with an interaction of Calogero type (rational, trigonometric or elliptic). Recently, these systems of interacting particles have been proved to be relevant in the study of β-models. An almost two decade old open question by Takasaki asks whether these multi-particle systems can be understood as isomonodromic equations, thus extending the Painlevé correspondence. In this paper we answer in the affirmative by displaying explicitly suitable isomonodromic Lax pair formulations. As an application of the isomonodromic representation we provide a construction based on discrete Schlesinger transforms, to produce solutions for these systems for special values of the coupling constants, starting from uncoupled ones; the method is illustrated for the case of the second Painlevé equation.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024