Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International Conference "Differential Equations and Topology" dedicated to the Centennial Anniversary of L. S. Pontryagin
June 22, 2008 09:00, Moscow
 


Legendre singularities and implicit ODE

V. M. Zakalyukin

Lomonosov Moscow State University
Video records:
Real Video 149.5 Mb
Windows Media 153.3 Mb
Flash Video 145.1 Mb
MP4 297.9 Mb

Number of views:
This page:903
Video files:436

V. M. Zakalyukin



Abstract: The classification of singularities of first order implicit differential equations in one variable due to A. Poincare, M. Chibrario, V. Arnold, J. W. Bruce, A. Davydov, and others is a famous application of singularity theory. It forms now a separate chapter in the theory of ordinary differential equations. A version of the notion of an implicit equation called web is of interest in physics and geometry. Many authors were interested in particular cases of implicit differential equation related to Hamiltonian mechanics and physics.
The theory of implicit differential equations is based on Poincare's geometrical construction of projections of surfaces embedded into contact three-space.
Much less is known on implicit systems of ODE. In a recent series of papers A. Remizov described some basic properties of Poincare's construction in odd-dimensional space corresponding to an implicit system of simultaneous differential equations.
In this talk we discuss some multi-dimensional counterpart of the classical theory, namely we classify low dimensional generic singularities of first integrals for implicit systems of ordinary differential equations and of slowfast dynamical systems.
It happens that the principle class of the singularities described below consists of Legendre projections of singular Legendre varieties called open Whitney umbrellas which arise in many other geometrical and physical applications of the singularity theory. They were studied by A. Givental, G. Ishikawa, and V. Zakalyukin.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024