Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






International conference Contemporary mathematics devoted to 80 anniversary of V. I. Arnold
December 21, 2017 10:00–11:00, Moscow, HSE, 6 Usacheva str.
 


Galois Groups in Enumerative Geometry and Applications

F. Sottile

Texas A&M University

Number of views:
This page:198
Youtube:



Abstract: In 1870 Jordan explained how Galois theory can be applied to problems from enumerative geometry, with the group encoding intrinsic structure of the problem. Earlier Hermite showed the equivalence of Galois groups with geometric monodromy groups, and in 1979 Harris initiated the modern study of Galois groups of enumerative problems. He posited that a Galois group should be ‘as large as possible’ in that it will be the largest group preserving internal symmetry in the geometric problem.
I will describe this background and discuss some work in a long-term project to compute, study, and use Galois groups of geometric problems, including those that arise in applications of algebraic geometry. A main focus is to understand Galois groups in the Schubert calculus, a well-understood class of geometric problems that has long served as a laboratory for testing new ideas in enumerative geometry.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024