Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Principle Seminar of the Department of Probability Theory, Moscow State University
November 1, 2017 16:45–17:45, Moscow, MSU, auditorium 12-24
 


Hausdorff dimension of the boundary of Brownian bubbles

R. C. Dalang

École Polytechnique Fédérale de Lausanne
Supplementary materials:
Adobe PDF 500.4 Kb

Abstract: Let $W=(W(s);s\in\mathbb{R}^2_{+})$ be a standard Brownian sheet indexed by the nonnegative quadrant. We show that with probability one, the Hausdorff dimension of the boundary of any connected component of the random open set $\{(s1; s2)s\in\mathbb{R}^2_{+}:W(s1; s2)>0\}$ is equal to
$$ \frac{1}{4}\left(1+\sqrt{13+4\sqrt{5}}\right)\backsimeq1.421 $$
This result is first established for additive Brownian motion, which provides good local approximations to the Brownian sheet, and then extended, with some technical effort, to the Brownian sheet itself. This is joint work with T. Mountford (Ecole Polytechnique Federale de Lausanne).

Supplementary materials: 2017_11_01_Большой_семинар.pdf (500.4 Kb)
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024