Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection







May 25, 2017 13:40–13:55
 


Diagonal complexes

G. Yu. Panina
Video records:
MP4 378.0 Mb
MP4 96.1 Mb

G. Yu. Panina



Abstract: Joint work with Joseph Gordon. Generalizing a construction of J.L. Harer we introduce and study diagonal complexes related to a (possibly bordered) oriented surface F equipped with a number of labeled fixed points. Investigation of some natural forgetful maps combined with length assignment proves homotopy equivalence of some of the complexes to the space of metric ribbon graphs $RG^{met}_{g,n}$, to the (introduced by M. Kontsevich) tautological $S^{-1}$-bundles $L_{i}$, and to a more sophisticated bundle whose fibers are homeomorphic to some surgery of the surface F. As an application, we compute the powers of the first Chern class of $L_{i}$ in combinatorial terms. The latter result is an application of N. Mnev and G. Sharygin local combinatorial formula.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024