Abstract:
Joint work with Joseph Gordon. Generalizing a construction of J.L. Harer we introduce and study diagonal complexes related to a (possibly bordered) oriented surface F equipped with a number of labeled fixed points. Investigation of some natural forgetful maps combined with length assignment proves homotopy equivalence of some of the complexes to the space of metric ribbon graphs RGmetg,n, to the (introduced by M. Kontsevich) tautological S−1-bundles Li, and to a more sophisticated bundle whose fibers are homeomorphic to some surgery of the surface F. As an application, we compute the powers of the first Chern class of Li in combinatorial terms. The latter result is an application of N. Mnev and G. Sharygin local combinatorial formula.