Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 22, 2017 11:40–12:10, Moscow, Steklov Mathematical Institute
 


Non-vanishing of automorphic $L$-functions of prime power level (joint papers with O.G. Balkanova)

D. Frolenkov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Video records:
MP4 182.9 Mb
MP4 720.9 Mb

Number of views:
This page:362
Video files:71

D. Frolenkov
Photo Gallery



Abstract: Iwaniec and Sarnak showed that at the minimum 25% of $L$-values associated to holomorphic newforms of fixed even integral weight and level $N \rightarrow \infty$ do not vanish at the critical point when $N$ is square-free and $\phi(N)\sim N$. We extend the given result to the case of prime power level $N=p^{\nu}$, $\nu\geqslant 2$. The proof is based on asymptotic evaluation of twisted moments
$$ M_1(l,u,v)=\sum_{f \in H_{2k}^{*}(N)}^{h}\lambda_f(l)L_{f}\bigl(\tfrac{1}{2}+u+v\bigr), $$

$$ M_2(l,u,v)=\sum_{f \in H_{2k}^{*}(N)}^{h}\lambda_f(l)L_{f}\bigl(\tfrac{1}{2}+u+v\bigr),L_{f}\bigl(\tfrac{1}{2}+u-v\bigr), $$
and the technique of mollification.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024