Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 25, 2017 14:40–15:10, Moscow, Steklov Mathematical Institute
 


On the analytic continuation of Lauricella function

S. I. Bezrodnykh

Federal Research Center "Computer Science and Control" of Russian Academy of Sciences
Video records:
MP4 181.1 Mb
MP4 713.5 Mb

Number of views:
This page:434
Video files:115

S. I. Bezrodnykh
Photo Gallery



Abstract: One of the generalizations of Gaussian hypergeometric function $F(a, b; c; z)$ to the case of several complex variables $(z_{1}, \dots, z_{N}) =: \mathbf{z}$ is Lauricella function $F_{D}^{(N)}\, (\mathbf{a}; b, c; \mathbf{z}\,)$, which is defined by $N$ -multiple series (see [1], [2])
$$ F_{D}^{(N)}\,(\mathbf{a}; b, c; \mathbf{z}\,)=\sum\limits_{|\bf{k}| = 0}^{\infty} \,\frac{(b)_{|\bf{k}|} (a_{1})_{k_{1}} \cdots (a_{N})_{k_{N}}} {(c)_{|\bf{k}|} k_{1}! \cdots k_{N}!}z_{1}^{k_{1}} \cdots z_{N}^{k_{N}},\, $$
where $b$ and $c \notin \mathbb{Z}^{-}$ are some scalar (complex -valued) parameters, $\mathbf{a} = (a_{1}, \dots, a_{N})$ is some vector-valued parameter and $\mathbf{k} = (k_{1}, \dots, k_{N})$ is multi -index of summation with non-negative components. This Lauricella series converges in the unit polydisk $\mathbb{U}^{N}$.
In the talk, we construct the system of formulae that continue analytically the function $F_{D}^{(N)}$ to $N$–dimensional complex space for an arbitrary number of variables (see [3]).
[1] G. Lauricella, Sulle funzioni ipergeometriche a piu variabili. Rendiconti Circ. math. Palermo. 7 (1893). P. 111 – 158.
[2] H. Exton, Multiple hypergeometric functions and application. N.-Y., J. Willey & Sons inc., 1976.
[3] S.I. Bezrodnykh, Analytic continuation formulas and Jacobi- type relations for Lauricella function. Doklady Math. 93:2 (2016). P. 129 – 134.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024