Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






À.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 22, 2017 15:25–15:55, Moscow, Steklov Mathematical Institute
 


An effective version of the Bombieri-Vinogradov theorem

A. A. Sedunova

Georg-August-Universität Göttingen
Video records:
MP4 966.9 Mb
MP4 245.2 Mb

Number of views:
This page:566
Video files:263

A. A. Sedunova
Photo Gallery



Abstract: In the talk, we deal with a new effective version of the Bombieri-Vinogradov theorem. This theorem improves the previous result belonging to F. Dress, H. Iwaniec and G. Tenenbaum [1]. Namely, we prove the following
Theorem. Suppose that $x\geqslant 4$, $1\leqslant Q_{1}\leqslant Q\leqslant x^{\,1/2}$ and let $l(q)$ denotes the smallest prime divisor of $q$. Then
$$ \sum\limits_{\substack{q\leqslant Q \\ l(q)>Q_{1}}}\max_{2\leqslant y\leqslant x}\max_{(a,q)=1}\biggl|\psi(y;q,a)\,-\,\frac{\psi(y)}{\varphi(q)}\biggr|\,\ll\, \bigl(xQ_{1}^{-1}\,+\,Qx^{\,1/2}\,+\,x^{\,95/96}\log{x}\bigr)(\log{x})^{3}. $$
(Here we get the factor $(\log{x})^{3}$ instead $(\log{x})^{7/2}$ from [1]). In the proof, we use a weighted form of Vaughan’s identity, allowing a smooth truncation inside the procedure and a technique of Graham [2] related to Selberg’s sieve.
[1] F. Dress, H. Iwaniec, G. Tenenbaum, Sur une somme liée à la fonction de Möbius. J. Reine Angew. Math. 340 (1983). P. 53 – 58.
[2] S. Graham, An asymptotic estimate related to Selberg’s sieve. J. Number Theory. 10:1 (1978). P. 83 – 94.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024