Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Knots and Representation Theory
February 28, 2017 18:30, Moscow
 


The triviality of a certain second-order invariant of link homotopy

Ashley Lightfoot

Number of views:
This page:162

Abstract: A link map is a map of spheres into another sphere with pairwise disjoint images, and a link homotopy is a homotopy through link maps. It is conjectured that link maps of two 2-spheres in the 4-sphere are classified, up to link homotopy, by an invariant due to Kirk. A "second-order" invariant was proposed by Li to detect counterexamples to this conjecture, but while his (published) examples were later found to be in error, it remained an open question as to whether counterexamples could be detected in this manner. In this talk I will discuss the (very geometric) constructions of these invariants, and outline a proof that Li's invariant cannot detect such examples; indeed, it is a strictly weaker invariant.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024