Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




General Mathematics Seminar of the St. Petersburg Division of Steklov Institute of Mathematics, Russian Academy of Sciences
February 20, 2017 13:00, St. Petersburg, POMI, room 311 (27 Fontanka)
 


An application of Galois theory to the optimal control

D. D. Kiselev

All-Russian Academy of International Trade
Video records:
MP4 2,108.0 Mb
MP4 535.7 Mb

Number of views:
This page:491
Video files:200

D. D. Kiselev



Abstract: Define the Zelikin-Lokutsievskiy polynom $f_n(x)$ with integer coefficients of degree $n-1$ as follows
$$ xf_n(x^2)=\mathrm{Im}\,(ix+1)\ldots(ix+2n). $$

We show the irreducibility of $f_{(q-1)/2}(x)$ over $\mathbb Q$ for any prime $q>3$. We calculate the Galois group of the polynom $f_n(x)$, when the numbers $p=n-1$, $q=2n+1$, $r=2n+7$ are prime and $889$ is not a square modulo $r$. We also show under irreducibility hypothesis of the polynom $f_{p+1}(x)$ over $\mathbb Q$ for almost all primes $p$ that there exists an infinite sequence of natural $n$, for which $A_{n-1}$ is embeddable into $\mathrm{Gal}_{\mathbb Q}(f_n(x))$.
An example: for any natural $k<808$ there exists an optimal control problem, the optimal control of which throws a dense winding of the $k$-dimensional torus in finite time.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024