Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 26, 2017 12:45–13:15, Moscow, Steklov Mathematical Institute
 


On the irreducible solutions of the equation with inverses

S. V. Konyagin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
Video records:
MP4 211.5 Mb
MP4 833.5 Mb

Number of views:
This page:434
Video files:68

S. V. Konyagin
Photo Gallery



Abstract: Consider the following symmetric Diophantine equation
$$ \frac{1}{x_{1}}+\ldots + \frac{1}{x_{r}}\,=\,\frac{1}{x_{r+1}}+\ldots + \frac{1}{x_{2r}},\qquad (1) $$
where $r\geqslant 3$, and the variables $x_{1},\ldots, x_{2r}$ run through the segment $[1,N]$. Such equations appear in te problems connected with the estimates of incomplete Kloosterman sums.
The solution of (1) is called irreducible if any component from the set $x_{1},\ldots, x_{r}$ is not contained in the set $x_{r+1},\ldots, x_{2r}$. The following assertions holds true.
Theorem 1. Let $N,r\geqslant 3$. Then the number $J_{r}(N)$ of irreducible solutions of the equation (1) with positive integer variables $1\leqslant x_{1},\ldots, x_{2r}\leqslant N$ obeys the estimate:
$$ J_{r}(N)<e^{(3r)^{3}-90}N^{\,r\,-\,r/(2(2r-1))} \biggl(\frac{\ln{N}}{r}+9\biggr)^{\!10r^{2}}\!\!\exp{\biggl(\frac{26r^{3/2}\sqrt{\ln{N}}}{\ln{(r\ln{N})}}\biggr)}. $$

The estimate of Theorem 1 allows one to derive an asymptotic formula for the whole number $I_{r}(N)$ of solutions of the equation (1) with integer variables $1\leqslant x_{1},\ldots, x_{2r}\leqslant N$. Namely, we have
Theorem 2. Let $N,r\geqslant 3$. Then the number $I_{r}(N)$ satisfies the relation
$$ I_{r}(N)\,=\,r!N^{r}\bigl(1\,+\,\delta_{r}(N)\bigr), $$
where
$$ |\delta_{r}(N)|\leqslant e^{(3r)^{3}-90}N^{-\,r/(2(2r-1))}\biggl(\frac{\ln{N}}{r}+9\biggr)^{\!10r^{2}}\!\!\exp{\biggl(\frac{26r^{3/2}\sqrt{\ln{N}}}{\ln{(r\ln{N})}}\biggr)}. $$
In the talk, we briefly describe main ideas that allow one to derive the above theorems and some other assertions concerning the number of solutions of the equation (1).

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024