|
|
А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 27, 2017 10:00–10:30, Moscow, Department of Mechanics and Mathematics, Lomonosov Moscow State University
|
|
|
|
|
|
On Lagrange algorithm for reduced algebraic irrationalities
N. M. Dobrovol'skii Tula State Pedagogical University
|
Number of views: |
This page: | 286 |
|
Abstract:
In 2015, we proved that the calculation of another successive coefficient
of the continued fraction expansion of a given algebraic number $\alpha$ requires
the calculation of two values of the minimal polynomial corresponding to the residual
fraction. In the talk, we prove the similar assertion where we replace the minimal plynomial
of the residual fraction to the minimal polynomial of
the initial number $\alpha$.
Since all the roots are different, we introduce the following notation
$$
\delta(\alpha)=\min_{2\le j\le n}\left|\alpha^{(1)}-\alpha^{(j)}\right|>0,
$$
Theorem. Let $\alpha=\alpha_{0}$ be the real root of an irreducible integer polynomial
and let $\alpha = \alpha^{(1)}$, $\alpha^{(2)}$,..., $\alpha^{(n)}$ be its rest roots. Next, suppose that $\alpha$ has the following expansion into continued fraction:
$$
\alpha\,=\,\alpha_{0}\,=\,q_{0}\,+\,\cfrac1{q_{1}\,+\,\cfrac{1}{\ddots+\cfrac{1}{q_{k}+\cfrac{1}{\ddots}}}}\,.
$$
Define the index $m_{0}=m_{0}(\alpha,\varepsilon)$ by the inequalities
\begin{equation*}
\frac{2(n-1)}{Q_{m_0-1}\delta(\alpha) }\,<\,\varepsilon.
\end{equation*}
Then the relations:
$q_{m}\,=\,q_{m}^{*}$, if
$$
(-1)^{m}f_{0}\left(\frac{q_{m}^{*}P_{m-1}+P_{m-2}}{q_{m}^{*}Q_{m-1}+Q_{m-2}}\right)\!>\!0\quad \text{and}\quad (-1)^{m}f_{0}\left(\frac{(q_{m}^{*}+1)P_{m-1}+P_{m-2}}{(q_{m}^{*}+1)Q_{m-1}+Q_{m-2}}\right)\!<\!0,
$$
$q_{m}\,=\,q_{m}^{*}+1$, if
$$
(-1)^mf_{0}\left(\frac{(q_{m}^{*}+1)P_{m-1}+P_{m-2}}{(q_{m}^{*}+1)Q_{m-1}+Q_{m-2}}\right)>0,
$$
$q_{m}\,=\,q_{m}^{*}-1$, if
$$
(-1)^mf_{0}\left(\frac{q_{m}^{*}P_{m-1}+P_{m-2}}{q_m^*Q_{m-1}+Q_{m-2}}\right)<0,
$$
hold for any $m>m_{0}$; here
\begin{equation*}
q_{m}^{*}\,=\,\left[\frac{f'_{0}\left(\frac{P_{m-1}}{Q_{m-1}}\right)}{Q_{m-1}^2
\left|f_{0}\left(\frac{P_{m-1}}{Q_{m-1}}\right)\right|}-\frac{Q_{m-2}}{Q_{m-1}}\right].
\end{equation*}
Language: English
|
|