Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 22, 2017 10:45–11:15, Moscow, Steklov Mathematical Institute
 


Applications of incidences theory to some triple exponential sums

I. D. Shkredovab

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Video records:
MP4 253.3 Mb
MP4 998.7 Mb

Number of views:
This page:473
Video files:65

I. D. Shkredov
Photo Gallery



Abstract: Let $\chi$ be a nonprincipal multiplicative character modulo a prime number $p$. Using the incidences theory over $\mathbf{F}_p\times \mathbf{F}_p \times \mathbf{F}_p$, we find new bounds for the sums
\begin{multline*} \sum\limits_{a\in A,\,b\in B,\,c\in C} \chi(a+b+c), \sum\limits_{a\in A,\,b\in B,\,c\in C,\,d\in D} \chi (a+b+cd),\quad \sum\limits_{a\in A,\,b\in B,\,c\in C,\,d\in D} \chi (a+b(c+d)) \end{multline*}
over arbitrary sets, and for a trinomial sum
$$ \sum_x \chi(x) e_p (ax^k +bx^m + cx^n) \,. $$


Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024