Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 22, 2017 16:55–17:25, Moscow, Steklov Mathematical Institute
 


The distribution of lattice points on the hyperboloid

V. A. Bykovskii

Khabarovsk Division of the Institute for Applied Mathematics, Far Eastern Branch, Russian Academy of Sciences
Video records:
MP4 717.0 Mb
MP4 182.0 Mb

Number of views:
This page:492
Video files:106

V. A. Bykovskii
Photo Gallery



Abstract: Let $d$ be an integer. Denote by
$$ K_{\mathbb{Z}}(d)\,=\,\bigl\{(a,b,c)\in \mathbb{Z}^{3}\,\:\,b^{2}-4ac\,=\,d\bigr\} $$
the set of lattice points lying on the hyperboloid
$$ \bigl\{(x_{1},x_{2},x_{3})\in \mathbb{R}^{3}\,:\,x_{2}^{2}-4x_{1}x_{2}\,=\,d\bigr\}, $$
which is hyperbolic in the case $d<0$ and elliptic in the case $d>0$. Also, we denote
$$ K_{\mathbb{Z}}^{+}(d)\,=\,\bigl\{(a,b,c)\in K_{\mathbb{Z}}(d)\,\:\,c>0\bigr\}. $$
The set $K_{\mathbb{Z}}(d)$ is non-empty if and only if $d\equiv 0,1 \pmod 4$. Such numbers $d\ne 0$ are called as discriminants because the elements of the set $K_{\mathbb{Z}}(d)$ parametrize the binary quadratic forms $Q(u,v) = au^{2}+buv+cv^{2}$ of discriminant $d$ with integers coefficients. Next, let $\delta_{q}(m) = 1$ if $m\equiv 0 \pmod q$, and $\delta_{q}(m) = 0$ otherwise. Then Dirichlet series
$$ \sum\limits_{c=1}^{+\infty}\biggl(\,\sum\limits_{b \pmod{2c}}\delta_{4c}(b^{2}-d)\biggr)\frac{1}{c^{s}}\,=\,\frac{\zeta(s)}{\zeta(2s)}\,G_{d}(s)\quad (d\ne n^{2}) $$
converges absolutely in the half -plane $\Re s > 1$ and determines the entire function $G_{d}(s)$. The following theorem holds true:
Theorem. Suppose that $d\ne n^{2}$, $d\equiv 0,1 \pmod 4$, and let $\varphi(x,y)$ be any smooth complex-valued function over $\mathbb{R}\times (0,+\infty)$ with a compact support. Then, for any fixed $\varepsilon > 0$ we have}
$$ \sum\limits_{(a,b,c)\in K_{\mathbb{Z}}^{+}(d)}\varphi\biggl(\frac{b}{2c},\frac{\sqrt{|d|}}{2c}\biggr)\,= $$

$$ =\,\frac{3}{\pi^{2\mathstrut}}\,\sqrt{|d|}G_{d}(1)\int_{-\infty}^{+\infty}\int_{0}^{+\infty}\varphi(x,y)\,\frac{dx\,dy}{y^{2\mathstrut}}\,+\,O_{\varphi,\varepsilon}\bigl(|d|^{1/2-1/12+\varepsilon}\bigr). $$


Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024