Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 26, 2017 10:35–11:05, Moscow, Steklov Mathematical Institute
 


Consecutive composite values in polynomial sequences

K. Ford

Department of Mathematics, University of Illinois at Urbana-Champaign
Video records:
MP4 926.4 Mb
MP4 235.1 Mb

Number of views:
This page:375
Video files:54

K. Ford
Photo Gallery



Abstract: Existing methods for finding long gaps between consecutive primes, equivalently finding long strings of consecutive composite integers, are all based on locating long gaps in the sequence of integers coprime to $P(x)$, the product of primes up to $x$. It is difficult, however, to port these method to related problems, such as the problem of finding many consecutive values of $n$ for which $n^{2}+1$ is composite. The difficulty stems from the fact that a crucial ingredient, a bound for smooth numbers which is the “big tool” in the prime gaps methods, cannot be used for the $n^{2}+1$ problem. In this talk, we review the methods for finding large gaps between primes, and outline a new probabilistic method for proving the existence of long strings of consecutive values of n for which $n^{2}+1$ is composite; that is, strings of $n\leqslant X$ whose length is of order larger than the trivial bound $\log X$. We also discuss the application of our methods to other, related questions. This is joint work with Sergei Konyagin, James Maynard, Carl Pomerance, and Terence Tao.

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024