Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 23, 2017 16:20–16:50, Moscow, Department of Mechanics and Mathematics, Lomonosov Moscow State University
 


On the fractional moments of some mollified arithmetical Dirichlet series

S. A. Gritsenko

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Video records:
MP4 200.2 Mb

Number of views:
This page:409
Video files:43

S. A. Gritsenko



Abstract: In 2002, A.A. Karatsuba demonstrated that the true order of fractional moments of some Dirichlet series allows one to obtain the estimate for the number of zeta-function zeros on the critical line which is more precise than the estimate of G. Hardy and J. Littlewood (1921).
In 2017, the author has found the true order lower and upper estimates for some mollified $L$ -functions and has applied it to the estimate of the number of zeros of Davenport-Heilbronn function on the critical line. The moments of mollified Dirichlet $L$ -functions mean the integrals
$$ \int_{T}^{2T}\bigl|L\bigl(\tfrac{1}{2}+it,\chi\bigr)\phi\bigl(\tfrac{1}{2}+it\bigr)\bigr|^{2k}dt, $$
where the function $\phi\bigl(\tfrac{1}{2}+it\bigr)$ has no odd zeros and such that the function $L\bigl(\tfrac{1}{2}+it,\chi\bigr)$ is such close to the constant function as possible. The idea of introducing such mollifier function $\phi\bigl(\tfrac{1}{2}+it\bigr)$ belongs to A. Selberg.
The exponent $2k$ is called the order of the moment. In his previous studies, the author considered only the moments of orders $\tfrac{1}{2}$ and $1$. In the present talk, we present the estimates of moments of orders $\tfrac{2}{v}$, where $v$ is any integer greater that $2$.
Our main result is the following. Suppose that $\varepsilon$ is an arbitrary small number, $X=T^{\,\varepsilon}$, and let
$$ \sum_{\nu=1}^{\infty}\frac{\alpha(\nu)}{\nu^{s}}\,=\, \prod\limits_{p\equiv\pm 1(\mmod 5)}\biggl(1-\frac{1}{2vp^{s}}\biggr)\!\!\prod\limits_{p\equiv\pm 2(\mmod 5)}\biggl(1-\frac{\varepsilon}{p^{s}}\biggr), $$

\begin{equation*} \beta(\nu)\,=\, \begin{cases} \displaystyle \alpha(\nu)\chi_{1}(\nu)\biggl(1-\frac{\log{\nu}}{\log X\mathstrut }\biggr), & \text{if}\;\;\nu<X,\\ 0, & \text{if}\;\;\nu\ge X, \end{cases} \end{equation*}
where $\chi_{1}(\nu)$ is Dirichlet character modulo $5$ with the condition $\chi_{1}(2)=i$,
$$ \varphi\bigl(\tfrac{1}{2}+it\bigr)\,=\,\sum_{\nu<X}\frac{\beta(\nu)}{\nu^{\,1/2+it}},\quad \phi\bigl(\tfrac{1}{2}+it\bigr)=\bigl(\varphi\bigr(\tfrac{1}{2}+it\bigr)\bigr)^{2v}. $$

theorem. The following estimates hold true:
\begin{multline*} T(\log T)^{(1+2\varepsilon v)^{2}/(2v^2)}\ll \int_T^{2T}\bigl|L\bigl(\tfrac{1}{2}+it,\overline{\chi}_{1}\bigr)\phi\bigl(\tfrac{1}{2}+it\bigr)\bigr|^{2/v}dt\ll\\ \ll T(\log T)^{(1+2\varepsilon v)^{2}/(2v^2)},\\ \int_T^{2T}\bigr|L\bigl(\tfrac{1}{2}+it,\chi_{1}\bigr)\phi\bigl(\tfrac{1}{2}+it\bigr)\bigr|^{2/v}dt\ll T(\log T)^{(1-2\varepsilon v)^{2}/(2v^2)},\\ \int_T^{2T}\bigr|L\bigl(\tfrac{1}{2}+it,\overline{\chi}_{1}\bigr)\phi\bigl(\tfrac{1}{2}+it\bigr)\bigr|dt\ll T(\log T)^{(1+2\varepsilon v)^{2}/8},\\ \int_T^{2T}\bigl|L\bigl(\tfrac{1}{2}+it,\chi_{1}\bigr)\phi\bigl(\tfrac{1}{2}+it\bigr)\bigr|dt\ll T(\log T)^{(1-2\varepsilon v)^{2}/8}. \end{multline*}

Denote by $N_{0}(T)$ the number of zeros of Davenport-Heilbronn function on the segment $\bigl[\tfrac{1}{2},\tfrac{1}{2}+iT\bigr]$. Then the above theorem implies that
$$ N_{0}(2T)\,-\,N_{0}(T)\,\gg\,T(\log T)^{1/2+1/12-\varepsilon}. $$


Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024