Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 24, 2017 12:40–13:10, Moscow, Steklov Mathematical Institute
 


Approximation of the zeta function via finite Euler products

Yu. V. Matiyasevich

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences
Video records:
MP4 802.3 Mb
MP4 203.6 Mb
Supplementary materials:
Adobe PDF 1.3 Mb

Number of views:
This page:592
Video files:171
Materials:75

Yu. V. Matiyasevich
Photo Gallery



Abstract: Consider finite Euler product
$$ \zeta_{m}(s)\,=\,\prod_{k=1}^{m}(1-p_k^{-s})^{-1}, $$
where $p_1,\,\dots,\,p_m$ are the initial primes, and finite xi function
$$ g(s)\,=\,\pi^{-\frac{s}{2}}(s-1)\Gamma\bigl({s}/{2}+1\bigr) $$
is the factor from the functional equation. Modified symmetrized finite xi function
$$ \xi^{ :=}_{{m}}(s) \! =\!s^m(1\!-\!s)^m\big(\xi_{m}(s)\!+\!\xi_{m}(1-s)\big) $$
trivially satisfies the functional equation $\xi^{ :=}_{{m}}(s)=\xi^{ :=}_{{m}}(1-s)$. All poles $q_1,\,q_2,\dots$ of this function are simple; let $r_1,\,r_2,\dots$ be corresponding residues, so the difference
$$ \xi^{ :\text{reg}=}_{{m}}(s)\,=\,\xi^{ :=}_{{m}}(s)-\sum_{k=1}^\infty r_k/(s-q_k). $$
Regularized finite Euler product
$$ \zeta^{\approx}_{{m}}(s)\,=\,\xi^{ :\text{reg}=}_{{m}}(s)/\big( s^m(1-s)^m g(s)\big) $$
gives surprisingly good approximations to the values and zeroes of the zeta function.
Example 1. The least (in absolute value) non-real zero of function $\zeta^{\approx}_{{1}}(s)$ (which is defined via single Euler factor $(1-2^{-s})^{-1}$) differs from the least non-trivial zero of the zeta function less than by $10^{-6}$.
Example 2. The three first Euler factors produce more than 30 correct decimal digits of $\zeta(1/2+100i)$.
For more examples visit
http://logic.pdmi.ras.ru/~yumat/personaljournal/
eulereverywhere.

Supplementary materials: slides.pdf (1.3 Mb)

Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024