Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






III International Conference "Quantum Topology"
June 24, 2016 16:20–17:10, Moscow, Steklov Mathematical Institute
 


On representations of virtual braid group and groups of virtual links

V. G. Bardakov
Video records:
Flash Video 1,700.7 Mb
Flash Video 285.3 Mb
MP4 1,087.5 Mb

Number of views:
This page:382
Video files:151

V. G. Bardakov
Photo Gallery



Abstract: We introduce some representation $\psi$ of the virtual braid group $VB_n$ into the automorphism group $Aut(F_{n,2n+1})$ of a free product $F_{n,2n+1} = F_n * \mathbb{Z}^{2n+1}$, where $F_n$ is a free group and $\mathbb{Z}^{2n+1}$ is a free abelian group. This representation generalizes some other representations. In particular, the representation $\varphi_0 : VB_n \longrightarrow Aut(F_{n})$ defined in [1]; the representation $\varphi_1 : VB_n \longrightarrow Aut(F_{n+1})$ defined in [2], [3] (see also, [4]); the representation $\varphi_2 : VB_n \longrightarrow Aut(F_{n,n+1})$ defined in [5]; the representation $\varphi_3 : VB_n \longrightarrow Aut(F_{n,2})$ defined in [6]. On the other hand the Artin representation is faithful. It is interesting to construct a representation which is an extension of it.
Theorem 1. {\sl There is a representation $VB_n \longrightarrow Aut(F_{n,n})$ which is an extension of Artin representation and in some sense is equivalent to the representation $\psi$.}
From the result of O. Chterental [7] follows that for $n > 3$ the representations $\varphi_1$, $\varphi_2$ and $\varphi_3$ have non-trivial kernels. Analogous question for $\psi$ is opened.
Using any of the representation $\psi, \varphi_0, \varphi_1, \varphi_2, \varphi_3$ one can defines a group $G_{\psi}(L)$, $G_{\varphi_0}(L)$, $G_{\varphi_1}(L)$, $G_{\varphi_2}(L)$, $G_{\varphi_3}(L)$ of a virtual link $L$. A connection between these groups gives
Theorem 2. {\sl The groups $G_{\varphi_0}(L)$, $G_{\varphi_1}(L)$, $G_{\varphi_2}(L)$, $G_{\varphi_3}(L)$ are homomorphic images of the group $G_{\psi}(L)$. If $L$ is a virtual knot, then we have isomorphisms $G_{\psi}(L) \cong G_{\varphi_1}(L) \cong G_{\varphi_2}(L) \cong G_{\varphi_3}(L)$.}
The talk is based on the joint work with M. V. Meshchadim and Yu. A. Mikhalchishina [8]. The author is partially supported by the Laboratory of Quantum Topology of Chelyabinsk State University (Russian Federation government grant 14.Z50.31.0020) and RFBR grant 16-01-00414 and RNF grant 16-41-02006
References:
  • V. V. Vershinin, On homology of virtual braids and Burau representation. J. Knot Theory Raminifications 10 (2001), no. 5, 795–812.
  • V. O. Manturov, On the recognition of virtual braids. Zap. Nauchn. Sem. POMI 299 (2003), 267–286.
  • V. G. Bardakov, Virtual and welded links and their invariants. Sib. Elektron. Mat. Izv. 2 (2005), 196–199.
  • V. G. Bardakov, P. Bellingeri, Groups of virtual and welded links. J. Knot Theory Ramifications 23 (2014), no. 3, 1450014, 23 pp.
  • D. Silver, S. G. Williams, Alexander groups and virtual links. J. Knot Theory Ramifications 10 (2001), no. 1, 151–160.
  • H. U. Boden, A. I. Gaudreau, E. Harper, A. J. Nicas, L. White, Virtual knot groups and almost classical knots. arXiv:1506.01726.
  • O. Chterental, Virtual braids and virtual curve diagrams. arXiv:1411.6313.
  • V. G. Bardakov, Yu. A. Mikhalchishina, M. V. Neshchadim, Representations of virtual braids by automorphisms and virtual knot groups. arXiv:1603.01425.


Language: English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024