Seminars
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Calendar
Search
Add a seminar

RSS
Forthcoming seminars




Complex analysis and mathematical physics
February 16, 2016 16:00–18:00, Moscow, Steklov Mathematical Institute, Room 430 (8 Gubkina)
 


Conformal reference frames for Lorentzian manifolds

I. V. Maresin

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow

Abstract: The twistor approach to Lorentzian manifolds (spacetimes) is based on the 5-dimensional space $\mathfrak{N}$ of all null geodesics. For the Minkowski space case it is described as “null projective twistors” (a real hypersufrace in the complex projective 3-space), but there is no canonical complex structure in general, curved case. One can rely on skies $\mathfrak{S}_x$ instead for each $x\in X$. The very definition of $\mathfrak{N}$ is problematical, unless the spacetime $X$ meets some convexity conditions. We can resort to the foliation of null geodesics in the bundle of skies, whereas $\mathfrak{N}$ (which could be defined as the space of leaves of the former) is endowed with a contact structure. This structure can be presented in terms of complex linear bundles and the Lorentz vector representation $({^1\!/\!_2},{^1\!/\!_2})$.
We shall consider a conformal reference frame, that is, a projection of the bundle of skies (as well as of $\mathfrak{N}$) onto a 3-dimensional real manifold, compatible with aforementioned contact structure. It permits to use surfaces (sky images) in the 3-manifold to describe the spacetime, as well as the differential geometry on it. A kind of “partial” almost complex structure on the bundle of skies appears, that compensates us for the loss of the global twistors’ complex structure.
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024