Videolibrary
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
Video Library
Archive
Most viewed videos

Search
RSS
New in collection






Conference to the Memory of Anatoly Alekseevitch Karatsuba on Number theory and Applications
January 28, 2016 17:00–17:25, Dorodnitsyn Computing Centre, Department of Mechanics and Mathematics of Lomonosov Moscow State University., 119991, Moscow, Gubkina str., 8, Steklov Mathematical Institute, 9 floor, Conference hall
 


Characters sums with additive convolutions

I. D. Shkredovabc

a Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Moscow
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
c Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
Video records:
Flash Video 164.0 Mb
Flash Video 977.0 Mb
MP4 627.4 Mb

Number of views:
This page:410
Video files:116

I. D. Shkredov



Abstract: Let $\chi(x)$ be a nontrivial multiplicative character over prime modulo $p$, and $A$, $B$ be arbitrary subsets of $\mathbb{Z}/p\mathbb{Z}$ such that $|A+A| \le K|A|$, where $K \ge 1$ be a constant and $|A|,|B|> p^{\,4/9+\varepsilon}$, $\varepsilon>0$.

M.-C. Chang obtained a nontrivial upper bound for the sum
$$ \biggl|\sum_{a\in A,\, b\in B} \chi(a+b)\biggr|\,\ll_{K,\varepsilon}\,|A||B|\cdot p^{-\tau(K,\varepsilon)}, \qquad (1) $$
where $\tau(K,\varepsilon)>0$.

Recently, B. Hanson considered an analog of sum (1) for three sets $A$, $B$ $C$ having no restrictions on its sumsets. Namely, he proved that if $|A|,|B|,|C| > \delta \sqrt{p}$, where $\delta>0$, then
$$ \biggl|\sum_{a\in A,\, b\in B,\, c\in C} \chi(a+b+c)\biggr|\,=\, o_{\delta}\bigl(|A||B||C|\bigr). \qquad (2) $$


Using the almost periodicity lemma of Croot–Sisask as well as new results on sum-products, we refine both (1) and (2).

Language: Russian and English
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024